実執務環境における知的照明システムの性能

三木光範，吉形允晴*，廣安知之，田中慎吾（同志社大学）

Performance of the Intelligent Lighting System for an actual workspace

Mitsunori Miki, Mitsuharu Yoshikata*, Tomoyuki Hiroyasu, Shingo Tanaka (Doshisha University)

1. はじめに

近年，オフィス照明が，ワーカーに与える影響が注目さ
れている(1)。我々は，オフィスワーカーが求める明るさに
個人差があると考えており，個人に適した光環境を提供す
ることで，ワーカーの知的生産性および創造性の向上，疲
労軽減などを期待している。また，これまでオフィスでは全
体を均一な光環境にすることが良いとされてきたが，我々
は個別な光環境を提供することで，照明制御による省エネ
ルギー性へも繋がると考えている。これらのことから，我々
は任意の場所に，ユーザが求める照度を提供可能とする
知的照明システムの研究開発を行っている(2)。

本報告では，実執務環境において行った実証実験の結果
から，本システムの有効性について述べる。

2. 知的照明システム

（2-1）システムの概要 知的照明システムでは，各
ユーザが照度センサを所持する。各ユーザは，照度センサ
に対し目標となる明るさ（照度）を設定することで，ユーユ
ザに要求する光環境を提供するシステムである。図1
に示すように，1つのネットワークにこれらの照度センサ,
電力計および照明を接続することで，照度および電力情報
を各照明が取得する。また，各照明は設定に示す自律分散
制御アルゴリズムに従い，環境に合わせて調光制御が可能
となる。各照明は，各ユーザが所持する照度センサに要求
される照度値になるよう，また省電力な状態になるよう自
身の光度を制御する。

（2-2）制御アルゴリズム 知的照明システムの制御
アルゴリズムでは，最適化手法の山登り法をベースとして
おり，設計変数（各照明の光度）を変化幅内（以下，近傍
）で，ランダムに変動する(2)，また，式(1)に示すように，目
的関数を電力量Pに各照明センサの目標値との誤差gをペ
ナルティ法により加算したものとする。

\[f = P + w \sum_{j=1}^{n} g_j \]

(1)

\[g_j = \begin{cases}
0 & 0 \leq (L_{c,j} - L_{t,j}) \\
C_j (L_{c,j} - L_{t,j})^2 & (L_{c,j} - L_{t,j}) < 0 \end{cases} \]

P：消費電力量，w：重み，Lc：現在照度，Lt：目標照度，
C：影響度，j：センサ番号

さて，各照明は自身の光度を1秒に1回程度変化させ
ることで，その際の照度および電力情報から目的関数の評
価を行い，目的関数の最小化を行う。なお，Cは各照明セ
ンサに対する照明の影響度（光度と照度の相関係数）を示し
ており，各照明の照度センサへの影響性を考慮して目標誤
差の重み付けを行っている。以下にアルゴリズムの流れを
示す。

（1）照度情報と消費電力をネットワークを介して取得
し，現在光度における目的関数の評価を行う。
（2）影響度と照度情報を基に近傍を決定する。
（3）近傍内で次光度をランダムに生成し，照明をその
光度で点灯させる。
（4）照度情報と消費電力をネットワークを介して取得
し，次光度における評価を行う。
（5）照明の光度変化量および照度センサの照度変化量
を用いて相関係数を計算する。
（6）評価値が改良された場合は次光度を受理し，そう
でない場合は元の光度に戻る。
（7）上記1～6の手順を探索の1サイクルとして，探索を
繰り返す。

また，照度センサへの影響度を基に，各照明は自身の近
傍を決定することで，効率的な解の探索を行う。

3. 実環境における知的照明システム有効性の検証

（3-1）実験概要 本システムは，これまで蛻光灯15
台の実験室環境で様々な実験を行ってきた(2)が，実際の執
務環境における実証実験が課題であった。そこで，実務空
間に知的照明システムを構築し，その検証を行う。

図2に示すよう，研究室における学生居室において10
名が執務を行う環境に，仮設天井を設けた。そこに17%か

![図1 知的照明システムの構成](Fig. 1. Construction of Intelligent Lighting System)
ら100%まで調光可能な照明10灯を用いて知的照明システムを構築する。被験者は21〜25歳の学生であり、施設内にて普段通りの生活を行う。なお、実験は2ヶ月間行い、その期間、各被験者は、項目が最もはかどる明るさを自由に設定することとする。

図2 実験施設における実験施設
Fig. 2. Experiment institution at actual workspace

(3・2) 実験結果
図3は各被験者の目標照度、光度、および照度の分布を示したものである。括弧内の数値は各照度センサの目標照度を示しており、各被験者が最適と感じる照度を実験期間中に選択したものである。また、各別照度の平均消費電力を図4に示す。1日間の消費電力は10時から22時の12時間の消費電力の平均値を用いた。現在、オフィスでは板間照度として750 lxが推奨されており、実験のオフィスでは昼光の初期照度において実現される照度が1000 lx程度であるオフィスが多い、昼光の劣化が進行している状態を基準として、図4では照度800 lxを電力の基準とした。

図3 照度および光度の分布
Fig. 3. Distribution of the luminance and illuminance

(3・3) システムの検証
(3・3・1) 目標照度の実現性
図3より、300 lx以下の照度の目標を設定している被験者を除いて、各被験者の目標照度と平均照度の誤差は18 lx以下であった。このことからもわかるように、ほぼユーザが要求する目標の値を実現できたといえる。また、目標の実現が適切な照度に関しては、各照度センサに近隣の照明の光度が最小の17 %で点灯しており、システム上で実現可能な照度範囲をほぼ満たしていることが確認できた。なお、照度の目標照度の差においては、周囲が800 lxと高照度の場所においては、約200 lx程度の差を実現できたが、周囲が低照度の場所においては、照明器具の下限値の関係上、100 lx程度の差しか実現不可能であった。なお、この問題に関しては調光範囲がより広い照明器具を用いることで解決できると考える。

(3・3・2) 省エネルギー性の検証
図3より、800, 600 lxを目標照度とする場所付近の照明は、71〜76 %と比較的高い光度で点灯している。また、400 lxを目標照度とする場所付近では、一部照度する800 lxの高照度の目標により、19 %の低照度の照明が存在するが、その他の照明器具を考慮した適切な照明点灯パターンを実現できることは確認できる。また、図4に示す1ヶ月間の消費電力量の推移においても、従来の照明環境に比べて約4〜5割の電力削減が確認できた。

参考文献
(1) 大林史明、富田和宏：「知的オフィスワークのプロダクトデザインに関する研究、平12年度の開催の開催と実験的評価」、ヒューマンインタフェースシンポジウム2006、Vol.1、No1322、pp151-156、2006
(2) 三木光輝：「知的オフィスシステムと知的オフィス環境コンソーシアム」、人工知能学会、Vol.22、No3、pp.399-410、2007