特徴選択のための進化的計算手法の調査

A Survey on Evolutionary Computation Approaches to Feature Selection
IEEE Transactions on Evolutionary Computation, Vol.20, No.4, pp.606-626, 2016
20170424harada

特徴選択は,データの次元を減らし,分類アルゴリズムといったアルゴリズムの性能を向上させるために,データマイニングおよび機械学習において重要な課題である.
しかし,特徴選択は主に探索空間が膨大なために困難な課題である.
特徴選択問題を解決するために,様々な方法が適用されている.
そのうち近年では,進化的計算技術が注目され,成功を収めている.
しかし,代替手法の長所と短所に関する包括的なガイドラインは存在しない.
これは分離・断片化された分野に対して,最終的に性能を改善しアプリケーションの成功させる機会の損失につながる.
本稿では,特徴選択のための進化的計算技術に関する最先端の内容について包括的に述べ,様々なアルゴリズムの貢献を特定する.