脳機能ネットワークのグラフ解析とモジュール性:最適な閾値の探索

Graph analysis and modularity of brain functional connectivity networks: searching for the optimal threshold
arXiv preprint arXivarXiv:1705.06481, 2017
20170830tmiyoshi

ニューロイメージングデータは,脳の接続性の形態的な構成をとらえるノードとエッジのネットワークとして表 すことができる.グラフ理論はこれらのネットワークとその構造を様々なスケールで研究するための一般的かつ 強力なフレームワークを提供する.例えば,脳機能接続ネットワークを含む多くの自然ネットワークのモジュー ル構造を調査するために,コミュニティ検出方法が広く適用されている.実験的ノイズによって最も影響を受け る最も弱いエッジを除去し,グラフの密度を減少させるために,スパース化手順はしばしば適用される.よって, 理論的および計算的により扱いやすくなる.しかしながら,弱いリンクには重要な構造情報が含まれている可能 性があり,最適なトレードオフを特定する手順は活発な研究の対象である.ここでは,統計的物理学に基づいた 方法であるパーコレーション解析の使用を検討し,脳接続ネットワークにおけるコミュニティ検出のための最適 なスパース化閾値を特定する. グラウンドトゥルースモジュール構造とヒトの脳機能接続ネットワークらしい現実的な形態的特徴を備えた合成 ネットワークを使用することにより,パーコレーション解析を適用して,ネットワークのコミュニティ構造の情報 を最大化する最適なスパース化閾値を特定できることを示す.このアプローチは,Newman のモジュラリティー, InfoMap,Asymptotical Suprise という脳接続ネットワーク分析に広く用いられる3 つのコミュニティ検出方法を 使用して検証される.重要なことは,最適な閾値を決定する重要な要素であるノイズとデータの変動の影響をテ ストすることである.このデータ駆動方法は,異なる接続強度を特徴とする患者やコントロール群などの集団に おける脳ネットワークのコミュニティ分析に特に有用であることが示されるはずである.