多重スケール特徴量統合のためのショートカットを備えた深層3 次元畳み込みエンコーダネットワークの多発 性硬化症病変セグメンテーション

Deep 3D Convolutional Encoder Networks With Shortcuts for Multiscale Feature Integration Applied to Multiple Sclerosis Lesion Segmentation
IEEE transactions on medical imaging, vol. 35, no.5, pp. 1229-1239, 2016
20171007_ttamaki

我々は,ショートカット接続を有する深層3 次元畳み込みエンコーダーネットワークに基づく新規のセグメンテーション手法を提案し,それを磁気共鳴画像における多発性硬化症(MS)病変のセグメント化に適用する.我々のモデルは,2 つの相互接続された経路,すなわち,より抽象的で高レベルの画像特徴を学習する畳み込み経路と,ボクセルレベルでの最終的なセグメンテーションを予測するデコンボリューション経路とからなるニューラルネットワークである.特徴抽出および予測経路の共同訓練は,画像タイプおよびセグメンテーションタスクの任意の所与の組み合わせに対する精度のために最適化された異なるスケールでの特徴の自動学習を可能にする.さらに,2 つの経路間のショートカット接続により,高レベルと低レベルのフィーチャを統合することができ,広範囲のサイズにわたる病変のセグメンテーションが可能となる.2 つの公的に利用可能なデータセット(MICCAI 2008 およびISBI 2015 チャレンジ)について我々の方法を評価した結果,我々の手法は,トレーニングに利用可能な比較的小規模のデータのみであってもトップランクの最先端の方法と同等に機能することが示された.さらに,本手法を,MS 臨床試験からの大量のデータセットを使って,自由に入手可能で広く使用されている5 つのMS 病変セグメンテーション法(EMS、LST-LPA、LST-LGA、Lesion-TOADS およびSLS)と比較した.その結果は我々の手法が広範囲の病変サイズにわたってこれらの他の手法より一貫して優れていることを示している.