Turbo-Satori:リアルタイム機能的近赤外分光法のためのニューロフィードバックと脳コンピューターインターフェースツールボックス

Turbo-Satori: a neurofeedback and brain-computer interface toolbox for real-time functional near-infrared spectroscopy
Luhrs, Michael and Goebel, Rainer
Neurophotonics, vol.4, No.4, pp. 041504, 2017
20171107_sfujii

“Turbo-Satoriは,リアルタイム機能的近赤外分光法(fNIRS)のための神経フィードバックと脳コンピュータインタフェース(BCI)ツールボックスである.リアルタイムの前処理および分析から神経フィードバックおよびBCIアプリケーションまでの複数のパイプラインが組み込まれている.ツールボックスは有用性に重点を置いて設計されており,リアルタイム実験のセットアップと実行を迅速に実行することができる. Turbo-Satoriは,リアルタイムの一般的な線形モデル計算に高度な再帰最小二乗法を使用し,高度なBCIアプリケーション用のSVM教師あり学習を使用している.これは,一般的なNIRx fNIRSハードウェアと直接通信し,最大6時間の録音実験中に,すべてのサンプリング間隔の計算時間を大幅に変更することなく,計算をリアルタイムで実行できるように幅広くテストされた.高度な処理機能に即座にアクセスできるようにすることで,fNIRSのデータ収集と処理の分野で,学生や非専門家にもこのツールボックスを使用可能である.柔軟なネットワークインターフェースにより,第三者の刺激アプリケーションは,処理されたデータおよび計算された統計にリアルタイムでアクセスし,この情報を神経フィードバックまたはBCIプレゼンテーションに容易に組み込むことが可能である.”

自然環境に記録されたfNIRS データの機能的事象(AIDE)の自動識別のための新規GLM ベースの手法

A novel GLM-based method for the Automatic
IDenti cation of functional Events (AIDE) in fNIRS
data recorded in naturalistic environments
NeuroImage, Vol.155, pp.291-304, 2017
20170620 sikeda

最近の技術の進歩により,実世界での神経イメージングを行うために使用できるポータブル機能近赤外分光法(fNIRS)デバイスの開発が可能になった.しかし,実際の実験は日々の生活状況を模倣するように設計されているため,イベント開始の識別は非常に困難で時間がかかることがある.本研究では,実世界のfNIRS ニューロ画像データから関数イベント(またはAIDE)の自動識別のための一般線形モデル(GLM)最小二乗適合分析に基づく新しい解析方法を紹介する.この方法の精度と実現可能性を調べるため,原理の証明として(i)ブロック,イベント,および混合設計実験をシミュレートする合成fNIRS データ,および(ii)実験fNIRS データは従来の数字を含む研究室ベースのタスクの中に記録された.AIDE は,シミュレートされたブロック,イベント,および混合設計実験のそれぞれについて89 %,97 %および91 %の精度で,シミュレートされたfNIRS データから機能的事象を回復することができた.実験室ベースの実験では,AIDE はfNIRS 実験測定データから機能的事象の66.7 %以上を回復した.この方法の強さを説明するために,我々は実験室の外で実施された複雑な現実世界の将来の記憶実験において,1 人の参加者のウェアラブルシステムによって記録されたfNIRS データにAIDE を適用した.実験の一環として,2 つの異なる条件(条件1:人との社会的交流,条件2:物体との非社会的交流)について,それぞれ4 つおよび6 つのイベント(参加者がターゲットとやり取りしなければならない動作)があった.AIDE は,それぞれ条件1 と2 について3/4 イベントと3/6 イベントを回復することが可能であった.同定された機能的事象は,参加者の動きおよび行動のビデオ記録からの行動データに対応した.本研究の結果は,「ビヘイビア・ファースト」分析ではなく「脳・ファースト」が可能であり,現実のfNIRS データを分析して現実の検査と機能的なニューロイメージングとのギャップを埋める新しいソリューションを提供できることを示唆している.

機能的近赤外イメージングに対する標準解析にむけて

Towards a standard analysis for functional near-infrared imaging
NeuroImage, Vol. 21, No. 1, pp.283–290, 2004
20161212 syoshitake

機能的近赤外分光法(fNIRS)は,オキシヘモグロビンおよびデオキシヘモグロビンの濃度の変化を測定する ことにより,脳の活性化をモニターすることが可能である.現在まで,fNIRS データ分析のための標準アプロー チは確立されていないが,これは将来の適用のための前提条件とみなされなければならない.そこで,我々は確 立された一般線形モデルを光イメージングデータに適用した.さらに,fNIRS データを周波数領域で解析を行っ た.1 次視覚野と 2 次視覚野を活性化させるチェッカーボードパラダイムと運動領域 V5 を追加で含む運動色彩刺 激(’L’ の回転)からなるパラダイムの 2 つの視覚課題を光イメージング法で調べた.一般線形モデルを用いた解 析は,第 1 のパラダイムの間に 1 次および 2 次の視覚野における活性化に焦点を置き,検出した.第 2 のパラダ イムでは,V5 を表す可能性が最も高い第 2 の側面に位置する活性化脳領域が見出された.空間解析でのスペクト ル分析では,同じそれぞれの脳領域におけるパワースペクトル密度およびコヒーレンスの最大値を示すことによっ て結果を確認した.さらに,運動領域における血行動態応答の遅延を示した.よって,本研究は,一般線形モデ ルおよび空間分解スペクトル分析が,光イメージングデータの標準的な統計的アプローチとして使用できること を示唆している.